Updating multipoint simulations using the ensemble Kalman filter

نویسندگان

  • L. Y. Hu
  • Y. Zhao
  • Y. Liu
  • C. Scheepens
  • A. Bouchard
چکیده

In the last two decades, the multipoint simulation (MPS) method has been developed and increasingly used for building complex geological facies models that are conditioned to geological and geophysical data. In the meantime, the ensemble Kalman filter (EnKF) approach has been developed and recognized as a promising way for assimilating dynamic production data into reservoir models. So far, the EnKF approach is proven efficient for updating continuous model parameters that have a linear statistical relation with the flow responses. It remains challenging to extend the EnKF approach to updating complex geological facies models generated by MPS, while preserving their geological and statistical consistency. In this paper, we introduce a new method for parameterizing geostatistical reservoir models generated by MPS. It is mathematically proven that updating these parameters during a history matching process does not compromise the hard data conditioning and the geological and statistical consistency of the reservoir model defined by the training image and other information including global facies proportions, trend maps etc. This method is an alternative to the gradual deformation method but has an enlarged search space for covering possible solutions. Based on the above parameterization, we present two algorithms of using EnKF approach to update multipoint simulations to dynamic data. We also present encouraging results of using the above methodology to condition a sector model of a fluvial reservoir to dynamic data. 1 ConocoPhillips, 600 North Dairy Ashford, P.O. Box 2197, Houston, TX 77252-2197, U.S.A. [email protected] 2 ConocoPhillips, 600 North Dairy Ashford, P.O. Box 2197, Houston, TX 77252-2197, U.S.A. [email protected] 3 ConocoPhillips, 600 North Dairy Ashford, P.O. Box 2197, Houston, TX 77252-2197, U.S.A. [email protected] 4 ConocoPhillips, 600 North Dairy Ashford, P.O. Box 2197, Houston, TX 77252-2197, U.S.A. [email protected] 5 ConocoPhillips, 600 North Dairy Ashford, P.O. Box 2197, Houston, TX 77252-2197, U.S.A. [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential updating of multimodal hydrogeologic parameter fields using localization and clustering techniques

[1] Estimated parameter distributions in groundwater models may contain significant uncertainties because of data insufficiency. Therefore, adaptive uncertainty reduction strategies are needed to continuously improve model accuracy by fusing new observations. In recent years, various ensemble Kalman filters have been introduced as viable tools for updating high-dimensional model parameters. How...

متن کامل

A framework for data assimilation and forecasting in high-dimensional non-linear dynamical systems

We present efficient sample based approximations to the problem of sequentially estimating and tracking atmospheric states for numerical weather prediction. The problem is characterized by high-dimensional, nonlinear systems and poses difficult challenges for real-time data assimilation (updating) and forecasting. The presented method extends the ensemble Kalman filter using mixtures, and repre...

متن کامل

A nonlinear filter that extends to high dimensional systems

Numerical weather prediction is characterized by high-dimensional, nonlinear systems and poses difficult challenges for real-time data assimilation (updating) and forecasting. The goal of this work is to build on the ensemble Kalman filter (EnsKF) to produce ensemble filtering techniques applicable to non-Gaussian densities in high dimensions. Two filtering algorithms are presented which extend...

متن کامل

Doppler and bearing tracking using fuzzy adaptive unscented Kalman filter

The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...

متن کامل

A New Adaptive Extended Kalman Filter for a Class of Nonlinear Systems

This paper proposes a new adaptive extended Kalman filter (AEKF) for a class of nonlinear systems perturbed by noise which is not necessarily additive. The proposed filter is adaptive against the uncertainty in the process and measurement noise covariances. This is accomplished by deriving two recursive updating rules for the noise covariances, these rules are easy to implement and reduce the n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Geosciences

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2013